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ABSTRACT 

This paper discusses the duality theory for compact commutative idempotent 
semigroups and compact commutative inverse semigroups. The major dif- 
ference from earlier work is the use of semicharacters which are measurable with 
respect to some measure on the semigroup. Duality theorems are proved 
using measures which give different dual spaces. 

1. Introduction. The purpose of these remarks is a discussion of  duality 

theorems for compact commutative idempotent semigroups and compact com- 

mutative inverse semigroups. In [1], Austin considered the problem of  finding 

an analogue of  the Pontrjagin duality theorem applicable to topological semi- 

groups. In [2], the Bakers improved on some of Austin's results and introduced 

the involution concept to obtain results outside the category of  inverse semi- 

groups. However, in both [1] and [2] the range of the semigroup homomorphisms 

was taken as D, the multiplicative semigroup of complex numbers of  modulus 

less than or equal to one, and the homomorphisms were taken to be continuous. 

In view of [4], [7], [9], [13] and [14], it seems possible to deal with measurable 

homomorphisms into D,  instead of considering a new notion of semicharacters 

as in [5]. 

Let S be a compact commutative idempotent semigroup. It is known from [3], 

that the continuous D-valued homomorphisms, S ^ , on S,  with the compact 

open topology are such that the D-valued homomorphisms, S "  ^, on S "  (which 

is discrete [1]) with the compact open topology are such that S " "  = S if and 

only if S is totally disconnected. This means that any component of  a compact 

commutative idempotent semigroup is considered as a point by the continuous 
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homomorphisms. However, from results in [8] and [11], if S is also connected 

and linearly ordered by < ,  where for e and f in S,  e < f if ef = e, then S is 

isomorphic to [0, 1] with minimum multiplication [12] and~the Lebesgue meas- 

urable D-valued homomorphisms, S*, identified modulo equal almost every- 

where, are isomorphic to [0, 1] with maximum multiplication and conversely, 

so that S** = S. 

We will consider here those semigroups S which are compact commutative 

idempotent semigroups and are linearly ordered by < .  A measure will be intro- 

duced on such S so that the measurable D-valued homomorphisms, S*, can be 

identified with the maximal ideal space of L~(S), given the Gelfand topology, 

and again realized as such an S and finally obtain S** = S. The extension of 

these results to certain compact commutative inverse semigroups [-6], will be 

outlined in the final section. 

2. In order to point out the differences between the material in these remarks 

and earlier results, we first consider an example of a compact, commutative, 

totally disconnected idempotent semigroup and compute S ^ and S*. 

EXAMPLE 1. Let S = {0} ~A{2-"}~=1 with minimum multiplication and the 

relative topology of the line. From the results of Austin S ^ is discrete and easily 

seen to be isomorphic to S with maximum multiplication and the discrete topo- 

logy. Since S is: otally disconnected S ^^  = S. 

A natural measure to introduce on S is the counting measure (each point 

having mass 1). The measurable homomorphisms on S are then all D-valued 

homomorphisms and S* can be identified as the maximal ideal space of ll(S) 
by applying the results of Hewitt and Zukerman [8]. The topology on S* is that 

of pointwise convergence, S* is compact and can easily be seen to be isomorphic 

to { - 1} U {0} U {2-")~= 1 with maximum multiplication and the relative topology 

of the line. Since S* is again of the same nature as S,  the measure on S* of as- 

signing mass 1 to each point except {0} is such that S** is isomorphic to S.  How- 

ever, if S* was given the counting measure then S** ¢ S. 

From this example, it is seen that even for a totally disconnected S, the choice 

of counting measure treats S as discrete and LI(S) as P(S). It follows that points 

such as {0} in S* above must have mass zero for duality to occur. This leads 

us to the following. 

DEFINITION. For any semigroup S, let E denote the set of idempotent dements 
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of S and let Eg the set of  those idempotent elements of  S such that e ~ Eu if and 

only if [ f : f  ~ e , f e  = f ]  is open and closed in E .  

THEOREM 1. Let S be a compact commutative idempotent semigroup which 

is linearly ordered by < and totally disconnected. I f  M is counting measure 

on Eg and zero elsewhere then S*, the M-measurable, D-valued homomorphisms 

on S, is a locally compact commutative idempotent semigroup which is linearly 

ordered, totally disconnected and has a measure M* (counting measure on 

(E*)g and zero elsewhere), such that S**, the M*-measurable, D-valued homo- 

morphisms on S*, is isomorphic to S algebraically and topologically under the 

evaluation mapping. 

PROOF. Note that Eg is a subsemigroup of S since ef = f or e for any e and f 

in S.  When M is chosen as the counting measure o n  Eq and zero elsewhere, then 

U(S, M) is l~(Eo) on S* can be identified as the maximal ideal space of  E~(E,) 

as in [7]. Since all D-valued homomorphisms on S take only the values 0 and 1, 

S* is seen to be totally disconnected. The linear order on S carries over to a linear 

order on S* since each homolnorphism is the characteristic function of an order 

interval [e, 1] (note that S must possess an identity element 1). When M* is taken 

as counting measure on (E*)g, S** is then identified with the maximal ideal space 

of  I~((E*)q). The topology on S* and S** is clearly the topology of  pointwise 

convergence as function spaces. 

Let us now consider the evaluation mapping of S ~ S** given by x ~ )7 where 

2(z) = t(x) for z ~ S*.  We show that this mapping is an algebraic isomorphism 

and a homeomorphism.  Since S is totally disconnected, the continuous homo-  

morphisms separate points and the mapping is one-to-one and a homomorphism 

so an isomorphism. 

To see that the mapping in onto, let 0 ~ S** and let t0 = sup[t  ~ S*: 0(z) = 0 ] .  

We assume without loss of  generality that 0 ~ 1. Now,  0(%) = 0 since if not 

!, , a net {t~} ~ (E*), with -c~ to and thus M*({Zo}) = 0 so 0 is equivalent 

to O' with 0'(%) = 0 and 0'  = 0 elsewhere. Let Xo = inf ix e S: %(x) = 1].  We 

show that ~?o = 0 a.e. I f  .7o(Zo) = 0, then for ~ > % ,  2o(t) = 1 = 0(~) and for 

t < % ,  ~?o(~)= ~?o(t)~o(Zo)= 0 = 0 (0 .  I f  : ?o (%)=  t ,  then x e Eg and again 

2 0 = 0. So the mapping is onto. 

Since S is compact,  we need only show the continuity of  the mapping to obta in  

a homeomorphism. Let {x~} be a net in S with x~ ~ x .  I f  x ~ E o then there is 

an % so that ~ > % implies x~x = x. Thus for any ~ ~ S* with t(x) = 1, ~(x~) = 1 
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and ~('r)--* ~(z). For  any -c ~ S* with "c(x) = 0, there is a y ~Eg such that 

yx = x ,  T(y) = 1 and either for all z with yz = z ~a y ,  z(z) = 0 so that z(x~) = 0 

for all a with x,y  = x~ ~ y and g~(z) ~ g(~) or z(y) = 1 for all y with xy = x ,  

and y ~ x .  Then z is a point of  measure 0 in S* and z(x) may be taken to have 

value 1 and the preceding gives ~(z )  --* ~(z). I f  x ~ E o and z c S* with z(x) = 1, 

then either there is a y ~ S,  y < x and z(y) = 1 and hence 5~(~) --* ~(T) or for 

all y < x ,  z(y) = 0 and hence z(x) can be taken as zero also. Thus, if z(x) = 0 

either there is a y > x so that z(y) = 0 and g~(r) ~ g(z) or z(y) = 1 for all y > x .  

Thus z is that homomorphism such that z(y) = 0, for y < x ,  and z(y) = 1, 

for y > x and z(x) = 1 or 1. Thus g~(z) ~ g(z) and the mapping is continuous 

and S and S** are homeomorphic.  

Let S be a compact  commutative totally disconnected idempotent semigroup 

linearly ordered by < .  There is a "na tu ra l "  duality for S and S* which is different 

from that  of  Theorem 1. That  is declaring S* to be the order dual of  S .  In order 

to clarify the precise role that the measures on S and S* must play for this duality, 

the following necessary and sufficient condition is evident. 

LEMMA. There is a measure m on S (m* on S*) such that: (a) if e , f ~ S  

with e ~ f then Zte, ll and Ztf,l~ are not equal almost everywhere and (b) each 

semicharacter is equal almost everywhere to some Zte, t~. 

The natural isomorphism of S** and S occurs here when S* is given the order 

topology and is the order dual of S with maximum multiplication instead of 

minimum, t 

3. To extend Theorem 1 to the non totally disconnected S,  we again first 

consider an example. 

EXAMPLE 2. Let 

S = {0} U{2-"}7=t  U [ 1 , 2 ]  U{2 q-2-n}7=i 

with minimum multiplication and the relative topology of the line. Here, 

Eg = S \ (1 ,2 ] ,  but the element 1 in Eg is not to have mass 1 because it has the 
~/ co property that the two homomorphisms ; ~ { 1 , 2 1 u { 2 + 2 -  }~=~ and Xt~.21u 

/ , /oo  {2 + 2 -  }~ = t (Za is the characteristic function of  A) differ only at 1 and we 

wish to have them identified, for otherwise S* would be such that S** # S.  

Let M be that measure on S which is counting measure on Eg/{1} and Lebesgue 

t The author wishes to thank the referee for the contribution of this idea to this paper. 
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measure on [1 ,2 ] .  It  is not difficult to see that S* can be thought of as 

{ -  1} t_) {0} u {2-n}~=1 u [1,2] k3 {3} u {3 + 2-n}7=1 with maximum multipli- 

cation and the relative topology of the line. Since S* is again similar to S the 

measure M* of counting measure on Eg*/({2} t_) {0} w {3}) and Lebesgue measure 

on [1,2] is such that S** is isomorphic to S.  Note that unless care is taken duality 

can fail when counting measure is on all of Eg. 

THEOREM 2. Let S be a commutative idempotent semigroup which is linearly 

ordered by < and is compact in the order topology. There is a measure M on S 

such that S*, the M-measurable, D-valued homomorphism on S,  is a commu- 

tative idempotent semigroup which is linearly ordered and locally compact 

in the order topology. Further, there is a measure M* on S* such that S**, 

the M*-measurable, D-valued homomorphisms on S*, is linearly ordered and 

to S algebraically and topologically, with the evaluation mapping, when S** 

has the order topology. 

Before proceedings to the proof  of Theorem 2, we need the 

LEMMA. Let S be as in the above theorem, then S* can be obtained from the 

order dual of S by the deletion and addition of points in the following manner. 

1. Each element with no immediate predecessor in S but with an immediate 

successor in S which is not the right hand end point of a nondegenerate component 

of S is to be deleted, and 

2. Each element with no immediate successor in S which is not interior to, 

or the left hand end point of a non-degenerate component of S is to be given 

an immediate predecessor in S*. 

PROOF. Let E 1 be the union of all non-degenerate componnets of S and let 

Eo = E.jIE 1 .~ Let M be that measure on S which assigns mass 1 to each point 

of E o and Lebesgue measure to each non-degenerate component of  S.  Now 

the homomorphisms of  S are all characteristic functions of  sets of  the form 

[x:x  > e] or [x:x > e l .  If  eESIE1 such that e has no immediate predecessor 

but has an immediate successor, the characteristic functions of  [x: x > e ]  and 

[x :x  > e] are equal almost everywhere. If  e~SIE1 and e has no immediate 

successor, then the characteristic functions of [x : x => e] and [x: x > e] are equal 

almost everywhere if e has no immediate predecessor and are distinct if e has an 

immediate predecessor. The description of  S* as the order dual of S together 

with certain additions and deletions as described follows. 

PROOF OF THEOREM 2. The introduction of the measures M and M* on ~ and 
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S* respectively derives from Example 2. Let E~ be the union of all non-degenerate 

components of  S and let Eo = Eg\E~. Let M be that measure on S which is 

counting measure on E 0 and Lebesgue measure on each component of E~. The 

measure M* on S* is defined analogously as counting measure on (E*)o and 

Lebesgue measure on each component of  (E*)t .  Since S and S* have identity 

elements, it is clear that S* and S** are semigroups which are linearly ordered 

by =<. By using the structure of S and S*, it is immediate that S and S** are order 

isomorphic using the evaluation mapping and hence algebraically and topologi- 

cally isomorphic. 

In order to supply the connecting link between Theorem 1 and 2, we now 

show that the order topology on S* is the Gelfand topology as induced by iden- 

tifying S* as the maximal ideal space of LI(S,M). For any t ~ S * ,  let Xo 

i n f [ x : t ( x ) = l ] ,  then t=)~s/sxoW{Xo} a . e . M .  Thus for ItcL~(S,M), 

p(t) = j'~o\d/~, and since t~ is a finite on S tt is continuous in the order topology 

of S*.  Further, it is clear that the functions # separate points of S*,  do not all 

vanish at any point and vanish at infinity (the zero horomorphism) if S* is not 

compact. Thus from [-8], the Gelfand topology and the order topology are the 

same. Here we have 

PROPOSITION. Let S be as in Theorem 2, then the Ge!fand topology on S* 

as the maximal ideal space of I2(S,M) agrees with the order topology on S*. 

Let S be a commutative idempotent semigroup which is linearly ordered by 

< and compact in the order topology. The "natural" duality mentioned in the 

remarks following Theorem ] again apply in this situation. Here S* is the 

order dual of S with the order topology and with maximum multiplication and 

the measures are to be taken so that (a) for e and f~S(S*),  Xr~,l~ and Z~y,11 are 

not equal almost everywhere and (b) each semicharacter on S(S*) is equal 

almost everywhere to some Xt~.~1. 

It follows from Theorem 2 that there can be more than one measure on S 

so that a duality theorem occurs. 

4. An extension of the preceding results to certain compact commutative 

inverse semigroups can easily be obtained. Let S be a compact commutative 

inverse semigroup such that the idempotent elements of S are linearly ordered 

and such that for each non-degenerate component of E the conditions of [15- 

theorem 3] are satisfied. It is readily seen that combining techniques here, and 

in [15] for introducing a measure on S,  the results of this paper can also be of- 
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tained for such semigroups. In particular, the measure M may be chosen as in 

the proof  of  Theorem 2 to depend on the idempotent elements. For each e ~ Eo, 

M is taken as Haar measure on the maximal group at e and on each component  

of  E 1 , M is the measure as chosen in [-15]. It is also clear that a "natural" duality 

can be obtained following the outline of  remarks following Theorem 2 for the 

measure on E and again applying the techniques of  [15]. 
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